Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Front Microbiol ; 14: 986729, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-2275386

RESUMO

The emergence and rapid evolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) caused a global crisis that required a detailed characterization of the dynamics of mutational pattern of the viral genome for comprehending its epidemiology, pathogenesis and containment. We investigated the molecular evolution of the SASR-CoV-2 genome during the first, second and third waves of COVID-19 in Uttar Pradesh, India. Nanopore sequencing of the SARS-CoV-2 genome was undertaken in 544 confirmed cases of COVID-19, which included vaccinated and unvaccinated individuals. In the first wave (unvaccinated population), the 20A clade (56.32%) was superior that was replaced by 21A Delta in the second wave, which was more often seen in vaccinated individuals in comparison to unvaccinated (75.84% versus 16.17%, respectively). Subsequently, 21A delta got outcompeted by Omicron (71.8%), especially the 21L variant, in the third wave. We noticed that Q677H appeared in 20A Alpha and stayed up to Delta, D614G appeared in 20A Alpha and stayed in Delta and Omicron variants (got fixed), and several other mutations appeared in Delta and stayed in Omicron. A cross-sectional analysis of the vaccinated and unvaccinated individuals during the second wave revealed signature combinations of E156G, F157Del, L452R, T478K, D614G mutations in the Spike protein that might have facilitated vaccination breach in India. Interestingly, some of these mutation combinations were carried forward from Delta to Omicron. In silico protein docking showed that Omicron had a higher binding affinity with the host ACE2 receptor, resulting in enhanced infectivity of Omicron over the Delta variant. This work has identified the combinations of key mutations causing vaccination breach in India and provided insights into the change of [virus's] binding affinity with evolution, resulting in more virulence in Delta and more infectivity in Omicron variants of SARS-CoV-2. Our findings will help in understanding the COVID-19 disease biology and guide further surveillance of the SARS-CoV-2 genome to facilitate the development of vaccines with better efficacies.

2.
Reprod Biol Endocrinol ; 21(1): 3, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: covidwho-2233193

RESUMO

BACKGROUND: COVID-19 infection has been linked with erectile dysfunction, which has also raised apprehensions about the impact of COVID-19 vaccination on male sexual functions. The purpose of this study was to investigate the impact of COVID-19 vaccination on male sexual functions, such as erectile function, orgasmic function, sexual desire, intercourse satisfaction, and overall satisfaction. METHODS: We used International Index of Erectile Function (IIEF) questionnaire for data collection. Mixed methods were adopted for this study, which consisted of Google online form distribution and the distribution of hard copies of the form to those who were not internet friendly. All data were entered in a spreadsheet and scores were assigned to each response according to the standard scores given in the IIEF questionnaire. Fifteen questions, one corresponding to each question in the IIEF questionnaire, were included to assess the impact of COVID-19 vaccination on each sexual function. RESULTS: In the first part of analysis, we calculated sexual function scores and men reporting low sexual function scores (~ 15%) were excluded, providing us with 465 individuals for further analysis. Regarding the impact of COVID-19 vaccination on male sexual functions, 71% individuals reported no impact, 3% reported a decline, 2.7% reported an improvement, and 23.3% could not assess the impact. We also performed analysis on the basis of age-groups of the participants and the duration after vaccination, finding that there was no impact irrespective of the age of subjects or the length of period after vaccination. CONCLUSIONS: COVID-19 vaccination does not affect male sexual functions, including erectile function, orgasmic function, sexual desire, intercourse satisfaction, and overall sexual satisfaction.


Assuntos
COVID-19 , Disfunção Erétil , Masculino , Humanos , Disfunção Erétil/epidemiologia , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Comportamento Sexual , Vacinação , Inquéritos e Questionários
3.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.05.24.445374

RESUMO

Outcome of infection with Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) may depend on the host, virus or the host-virus interaction related factors. Complete SARS-CoV-2 genome was sequenced using Illumina and Nanopore platforms from naso-/oro-pharyngeal ri-bonucleic acid (RNA) specimens from COVID-19 patients of varying severity and outcomes, including patients with mild upper respiratory symptoms (n=35), severe disease admitted to intensive care with respiratory and gastrointestinal symptoms (n=21), fatal COVID-19 outcome (n=17) and asymptomatic (n=42). Of a number of genome variants observed, p.16L>L (Nsp1), p.39C>C (Nsp3), p.57Q>H (ORF3a), p.71Y>Y (Membrane glycoprotein), p.194S>L (Nucleocapsid protein) were observed in similar frequencies in different patient subgroups. However, seventeen other variants were observed only in symptomatic patients with severe and fatal COVID-19. Out of the latter, one was in the 5UTR (g.241C>T), eight were synonymous (p.14V>V and p.92L>L in Nsp1 protein, p.226D>D, p.253V>V, and p.305N>N in Nsp3, p.34G>G and p.79C>C in Nsp10 protein, p.789Y>Y in Spike protein), and eight were non-synonymous (p.106P>S, p.157V>F and p.159A>V in Nsp2, p.1197S>R and p.1198T>K in Nsp3, p.97A>V in RdRp, p.614D>G in Spike protein, p.13P>L in nucleocapsid). These were completely absent in the asymptomatic group. SARS-CoV-2 genome variations have a significant impact on COVID-19 presentation, severity and outcome.


Assuntos
Sinais e Sintomas Respiratórios , Síndrome Respiratória Aguda Grave , COVID-19
4.
Andrologia ; 52(9): e13712, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: covidwho-613270

RESUMO

We performed this systematic review to evaluate the possibility of an impact of SARS-CoV-2 infection on male fertility. SARS-CoV-2 enters the cells with the help of ACE2; therefore, testicular expression of ACE2 was analysed from transcriptome sequencing studies and our unpublished data. Literature suggested that SARS-CoV-1 (2002-2004 SARS) had a significant adverse impact on testicular architecture, suggesting a high possibility of the impact of SARS-CoV-2 as well. Out of two studies on semen samples from COVID-19 affected patients, one reported the presence of SARS-CoV-2 in the semen samples while the other denied it, raising conflict about its presence in the semen samples and the possibility of sexual transmission. Our transcriptome sequencing studies on rat testicular germ cells showed ACE expression in rat testicular germ cells. We also found ACE2 expression in transcriptome sequencing data for human spermatozoa, corroborating its presence in the testicular germ cells. Transcriptome sequencing data from literature search revealed ACE2 expression in the germ, Sertoli and Leydig cells. The presence of ACE2 on almost all testicular cells and the report of a significant impact of previous SARS coronavirus on testes suggest that SARS-CoV-2 is highly likely to affect testicular tissue, semen parameters and male fertility.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/complicações , Infertilidade Masculina/virologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/complicações , Testículo/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidade , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Perfilação da Expressão Gênica , Humanos , Infertilidade Masculina/patologia , Masculino , Modelos Animais , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Ratos , SARS-CoV-2 , Sêmen/virologia , Espermatozoides/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Testículo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA